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High-order	finite	elements	are	a	good	foundaOon	for	next-
generaOon	scalable	mulO-physics	simulaOons	

High-order !
thermodynamics!

High-order !
MHD!

High-order !
rad. diff.!

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes”! “zones”!“edges”! “faces”!

High-order !
kinematics!

§  Large-scale	parallel	multi-physics	simulations	
•  radiation	diffusion	
•  electromagnetic	diffusion	
•  compressible	hydrodynamics	

§  Finite	elements	naturally	connect	different	physics	

	

	

§  High-order	finite	elements	on	high-order	meshes	
•  increased	accuracy	for	smooth	problems	
•  sub-element	modeling	for	problems	with	shocks	
•  bridge	unstructured/structured,	sparse/dense	
•  FLOPs/bytes	increase	with	the	order	

§  Need	new	(interesting!)	R&D	for	full	benefits	
•  meshing,	discretizations,	solvers,	AMR,	UQ,	visualization,	…	 High-order	H(curl)	AMR	in	geophysics	

modeling	of	subsurface	electric	conduc<vity	

8th	order	Lagrangian	hydro	simula<on	
of	a	shock	triple-point	interac<on	



Our	scalable	high-order	finite	element	simulaOon	pipeline	

§  FE	research	and	fast	application	prototyping	–	MFEM	

§  High-order	hydrodynamics	and	multi-physics	–	BLAST	

§  Scalable	solvers	for	radiation,	electromagnetic	diffusion	–	hypre	

hypre:	Scalable	linear	
solvers	library	

MFEM:	Modular	finite	
element	methods	library	

BLAST:	High-order	ALE	shock	
hydrodynamics	research	code	

www.llnl.gov/casc/blast	www.llnl.gov/casc/hypre	 mfem.org	



Inertial	Confinement	Fusion	

Laser-driven	high	energy-density	
plasma	computation	

§  Compressible	Hydrodynamics	describes	
flows	where	the	density	changes	in	
response	to	pressure.	

§  This	is	the	case	in	gases,	or	liquids	with	large	
energies	and/or	pressure	changes.	

§  Many	applications	at	LLNL/DOE,	e.g.	
implosion	in	the	National	Ignition	Facility.	

§  Mathematical	challenges:	

•  shock	waves	

•  handling	of	discontinuous	solutions	

•  moving	meshes	

•  multi-material	flow	

•  coupling	with	other	physics	

Compressible	shock	hydrodynamics	





The	Arbitrary	Lagrangian-Eulerian	(ALE)	framework	is	the	
foundation	of	many	large-scale	simulation	codes.		

	

Typical	ALE	approaches	for	shock	hydro	consist	of:	
•  Lagrangian	phase	

-  Moving	computational	mesh	

•  Advection	phase	
-  Mesh	optimization	

-  Conservative	field	remap	
-  Monotonicity	

•  Multi-material	element	treatment	

Traditional	ALE	simulation	

High-order	Lagrangian	simulation	

Triple-point	shock	interaction	problem	

ALE	DiscreOzaOons	for	Large-Scale	Hydrodynamic	
SimulaOons	
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BLAST	–		novel	simulaOon	code	combining:	
•  High-order	finite	elements	+	
•  High-order	meshes	+	
•  ALE	hydrodynamics	
	

Lagrange	Phase	

•  Solve	hydro	PDEs	on	moving	curvilinear	mesh	
•  ConOnuous	HO	kinemaOcs	
•  DisconOnuous	HO	materials	and	

thermodynamics	
•  HO	extension	of	classical	SGH	

Remap	Phase	

•  HO	mesh	opOmizaOon	
•  Field	remap	by	solving	advecOon	in	pseudo-Ome	
•  Ensure	conservaOon	and	HO	monotonicity	
	

The	BLAST	code	discreOzes	the	ALE	fields	and	
geometry	with	high-order	finite	elements	

thermodynamic	
basis	(Q1)	

kinemaOc	
basis	(Q2)	



Advection phase (
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Lagrangian	phase	
v  mesh	motion	

determined	by	
physical	velocity	

v  time				evolution	

Remap	phase	
v  artificial	mesh	

motion,	defining	
the	mesh	velocity	

v  “pseudo-time”					
evolution	

Lagrangian phase (
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We	models	shock	hydrodynamics	using	high-order	
FEM	in	both	Lagrangian	and	Remap	phases	

v  Galerkin	FEM	

v  DG	FEM	

Gauss-Loba:o	basis	

Bernstein	basis	



!

•  Mixed cells appear after remap or due to shaping!
ü  different material properties, but one velocity!

•  We track materials with material indicator functions:!

!

ü  Finite element functions or sub-cell point values     !
ü  High-order generalization of “volume fractions”!

•  Volume change is controlled by the volumetric strain!

ü  Lagrangian indicators:!

ü  Closure models: sub-zonal strain evolution!

⌘k ⇡ Vk

V

,

X

k

⌘k = 1, 0  ⌘k(x, t)  1.

�k ⇡ dVk

dV
,

X

k

�k = 1

Simple	material	indicator	function	and	its	
monotone	projection	with	a	Bernstein	basis	

Indicators	for	a	two-material	problem	in	1D	

�k = ⌘k

We	represent	different	materials	as	high-order	
material	indicator	funcOons	
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Lagrangian Phase Remap Phase

Material Indicator: M
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= Kvv
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= v

dx

@⌧
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⇢ ⌘
X

k

⌘k⇢k

Total	density	

⇢e ⌘
X

k

⌘k⇢kek

Total	internal	energy	 Total	stress	

ConOnuous	Lagrange	 Semi-discrete	Lagrange	
Material	
indicators	

Material	mass	

Material	
energy	

Momentum	

Posi>on	

(M)ij =

Z

⌦
 j i

(Me)ij =

Z

⌦
⇢�j�i

(Mv)ij =

Z

⌦
⇢wjwi

HO	closure			
model	

Strong	mass	
conserva>on	

Dense	solve	

Sparse	solve	

Mesh	update	

Zonal	thermodynamic	mass	matrix	

Global	kinema8c	mass	matrix	

Generalized	corner	forces	

� ⌘
X

k

⌘k�k F =
X

k

Fk(Me,k)ij =

Z

⌦
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⌦
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Material	corner	forces	Material	mass	 Material	internal	energy	 Material	volume	
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Z

⌦
⌘kIEk =

Z

⌦
⌘k⇢kekMk =

Z

⌦
⌘k⇢k

Lagrange	phase	solves	a	system	of	conservaOon	
laws	in	physical	Ome	using	Galerkin	finite	elements	

*	V.	Dobrev,	Tz.	Kolev,	R.	Rieben,	“High-order	curvilinear	finite	elements	for	Lagrangian	hydrodynamics”,	SISC,	2012	



Advection-based remap!
•  Continuous transition in pseudo-time from the old to the 

new, optimized, mesh!
•  Preserve (discontinuous) fields in physical space while 

the mesh is moving!

Accuracy & Conservation!
•  Discontinuous Galerkin (DG) discretization, upwind flux!

•  Remap by ODE integration (swept volumes)!
•  Order independent, no interface reconstruction!

Monotonicity!
•  Preserve bounds, no spurious oscillations!
•  Enforced at degrees of freedom!
•  Different approaches: LSD, FCT, and OBR!

3rd	order	DG	remap	on	a	4th	order	
mesh	deforming	in	pseudo-time	

u =
dx

d⌧

@⇢

@⌧
= 0 , d⇢

d⌧
= u ·r⇢

Bernstein	HO	basis:	
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⌘k , ⌘k⇢k , ⌘k⇢kek
Gauss-Lobatto	HO	basis	

v
x

, v
y

, v
z

We	have	developed	a	high-order	“pseudo-Ome”	DG	
advecOon	algorithm	for	conservaOve	and	accurate	remap	
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ConOnuous	Remap	 Semi-discrete	Remap	
Material	
indicators	

Material	mass	

Material	
energy	

Momentum	

Remesh	
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Assembly	&	
dense	solve	

Assembly	&	
sparse	solve	

Remesh	update	

Zonal	thermodynamic	mass	matrix	 Global	kinema8c	mass	matrix	

Kinema8c	advec8on	matrix	Thermodynamic	advec8on	matrix	
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Remap	phase	solves	a	system	of	advecOon	equaOons	in	
pseudo	Ome	using	DisconOnuous	Galerkin	finite	elements	

*	R.	Anderson,	V.	Dobrev,	Tz.	Kolev,	R.	Rieben,	“Monotonicity	in	high-order	curvilinear	finite	element	arbitrary				
Lagrangian–Eulerian	remap”,	IJNMF,	2015	



High-order	 Low-order	SGH	

Robustness	

Symmetry	
preservation	

High-order	FE	on	high-order	meshes	lead	to	more	
robust	and	reliable	Lagrangian	simulaOons	



2-material	RT	instability	4-material	axisymmetric	high-velocity	plate/rod	impact	

High-order	methods	perform	well	on	a	variety	of	
challenging	mulO-material	ALE	problems	



Lagrangian	simulaOons	on	coarse	meshes	with	Q12-
Q11	finite	elements	



Shock	triple-point	interaction	(4	elements)	 Smooth	RT	instability	(2	elements)	

Lagrangian	simulaOons	on	coarse	meshes	with	Q12-
Q11	finite	elements	



18×4	for	Q2-Q1,	
32×9	for	Q3-Q2,…	

Generalized	force	matrix	

Generalized Corner Forces

The computational kernel of our
method is the evaluation of the
Generalized Corner Force matrix

Fij =

Z

�(t)
(⇤ : ⌥⌥wi ) ⌅j

Semi-discrete finite element method

Momentum Conservation: Mv
dv

dt
= �F · 1

Energy Conservation: Me
de

dt
= FT · v

Equation of Motion:
dx

dt
= v

Stress Deviator Rate: Me
ds

dt
= g

F can be assembled locally from zonal corner force matrices Fz .

Generalized SGH “corner forces”: Fz is 8x1 for Q1-Q0, 18x4 for Q2-Q1, 32x9 for Q3-Q2 (2D).

Locally FLOP-intensive evaluation of Fz requires high order quadrature {(�k , ⌥̂qk )}

(Fz )ij =

Z

�z (t)
(⇤ : ⌥⌥wi ) ⌅j ⇤

X

k

�k ⇤̂(⌥̂qk ) : J�1
z (⌥̂qk )⌥̂⌥̂wi (⌥̂qk ) ⌅̂j (⌥̂qk )|Jz (⌥̂qk )|

Pressure is a function computed through the EOS in {⌥̂qk} (“sub-zonal pressure”).

By strong mass conservation, the above algorithm gives exact semi-discrete energy conservation
for any choice of velocity and energy spaces (including continuous energy).

dE

dt
=

d

dt

 Z

�(t)
⇥
|⌥v |2

2
+ ⇥e

!
=

d

dt

„
v · Mv · v

2
+ 1 · Me · e

«

= v · Mv ·
dv

dt
+ 1 · Me ·

de

dt
= �v · F · 1 + 1 · FT · v = 0.

Any “compatible hydro” method can be put into this framework for appropriate Mv, Me and F.

Rieben et al. (LLNL) High-Order Finite Elements for Lagrangian Hydro MultiMat 2011 16 / 29

Lagrangian	algorithm	in	BLAST	

Semi-discrete	Lagrangian	phase	and	its	finite	
element	numerical	kernels	

(Mv)ij =

Z

⌦z

⇢ ~wi · ~wj =
X

k

↵k⇢̂(~̂qk) ~̂wi(~̂qk) · ~̂wj(~̂qk)|Jz(~̂qk)|

Kernel	1:	Assembly/evaluation	of	the	zonal	corner	forces:	
	
	

Kernel	2:	Inversion	of	the	(global)	kinematic	mass	matrix:	
	
	

Lagrangian Phase Remap Phase

Mass: ⇢|J| = ⇢0|J0| M⇢
@⇢

@⌧
= K⇢⇢

Momentum: Mv
dv

dt
= �F · 1 Mv

@v

@⌧
= Kvv

Energy: Me
de

dt
= F

T · v Me
@e

@⌧
= Kee

Position:

dx

dt
= v x = xremesh

Stress Deviator: Me
dsij

dt
= g Me

@sij
@⌧

= Kesij



A = PTGTBTDBGP

Kernel	1:	ParOal	assembly	and	evaluaOon	
of	bilinear	forms	

The	finite	element	assembly/evaluation	of	general	bilinear	forms	(matrices)	can	be	
decomposed	into	parallel,	mesh	topology,	FE	basis,	and	geometry/physics	components:	

Ap A

D

Az

P G B

D

Ap AzA Aq

Storage	options:	
1.  					,				:	standard	global	matrices	(e.g.	in	CSR/ParCSR	format)	
2.  					:	local	stiffness	matrices	(e.g.	for	high-order	methods)	
3.  				:	quadrature	point	data	only	(independent	of	basis	order)	
4.  none	:	action-only	evaluation	(e.g.	for	explicit	methods)	



Full	assembly	 Quadrature-point	storage	only	(DE	)	

•  p-refinement	on		512×256	mesh,	strong	scaling	down	to	1	elem/core,	high-order	
results	in	low	order	run	time	at	32K	cores	

•  Newer	result	have	much	earlier	cross-over	point	
•  Quadrature-point	storage	in	mass/corner	force	matrices,	Jacobi	preconditioning	

Large-scale	strong	scalability	with	parOal	assembly	

1	zone/core	

~600	dofs/zone	



Kernel	2:	StaOonary	linear	iteraOon	(SLI)	
approximaOon	

Lumped	mass	matrix	in	the	Gauss-Lobatto	
basis	is	close	to	the	full	mass	matrix.	
	

A	sequence	of	improving	approximations:	
•  		
•  		
•  …		
•  		
	

Properties:	
•  mass	conserving:	
•  limited	spread	of	information	
•  converge	to	exact	inverse:		
•  equivalent	to	fixed	numbers	of	stationary	

linear	iterations:																					is	the	same	as	

						for																										.	

B1 = M�1
L

B2 = 2M�1
L �M�1

L MM�1
L

I �BnM = (I �M�1
L M)n

1tBn⇢ = 1tM⇢

lim
n!1

Bn = M�1

k = 1, . . . , n

xn = Bnb

x0 = 0, xk+1 = xk +M

�1
L (b�Mxk)

2Drz,	2nd	order	ALE,	PCG	(leR)	vs	SLI,	n=4	(right)	



Lagrangian	Sedov	problem	with	fixed	number	of	DOFs	(different	meshes)	

BLAST	has	good	strong	scaling	properties	

3D	2D	
256K	DOFs	 64K	DOFs	

Recent	strong	scalability	on	a	BG/Q	node	with	SLI	

SGH 
SGH 

more FLOPs, 
same runtime 

 256 cores 



•  6	CUDA	kernels,	Hyper-Q,	CPU-GPU	transfer	of	vectors	

High-order	finite	element	kernels	are	well-suited	for	
GPU	acceleraOon	

14×	faster	with	MPI	 54×	faster	with	MPI+CUDA	

*	T.	Dong,	V.	Dobrev,	Tz.	Kolev,	R.	Rieben,	S.	Tomov,	J.	Dongarra,	“A	step	towards	energy	efficient	compu8ng:	
redesigning	a	hydrodynamic	applica8on	on	CPU-GPU”,	IEEE	PDPS,	2014	



•  Non-conforming	refinement	for	quad/hex	
meshes	is	actively	developed	in	MFEM.	

–  Implemented	by	generalizing	G,	P	

–  h-refinement	with	fixed	p	

•  Powerful	and	general:		

–  any	(high-order)	finite	element	space	on	
any	(high-order)	curved	mesh	

–  arbitrary	order	hanging	nodes	

–  anisotropic	refinement	

–  serial	and	parallel	(limited)	

–  independent	of	the	physics	(easy	to	
incorporate	in	BLAST,	etc.)	

•  Top:	Adaptation	to	a	shock-like	solution.	

•  Bottom:	relative	AMR	error	for	the	2D	problem	
improves	significantly	with	the	order	
(approaching	full	h-p	refinement)	

uniform refinement 
1st,2nd,4th,8th order 

1st order AMR 

2nd order AMR 

4th order AMR 

8th order AMR 

General	adapOve	mesh	refinement	on	high-order	
curved	meshes	



8	cores,	random	non-conforming	ref.	 4096	cores,	random	non-conforming	ref.	

Shock	propagates	through	non-conforming	zones	without	imprinting	

StaOc	parallel	NMR,	Lagrangian	Sedov	problem	



Anisotropic	AMR	aiming	for	“square”	elements	at	t=5.0	

StaOc	parallel	AMR,	Lagrangian	shock	triple-point	



Simple	anisotropic	AMR	for	high-order	H1	and	
H(curl)	problems	

•  ZZ	for	(high-order)	H1	problems	

•  Anisotropic	version	

•  Simple	and	close	to	using	exact	error	
	

•  H(curl)	EM	problems	can	really	benefit	
from	high-order	AMR	

•  MFEM	supports	it	“out	of	the	box”	
•  Working	on	extending	the	anisotropic	

ZZ	estimator	to	H(curl)	
•  Preliminary	magnetostatic	results:	

⌘K = kF � FavgkL2(K)

�r · (⇢ru) = f

F = ⇢ru

(⌫
K

)
x,y,z

= k(F � F
avg

) · J
K

e
x,y,z

k
L2(K)

Magne<c	field	magnitude	in	an	angled	pipe	problem	
*	mfem-3.1,	Jan	2016	



EM	diffusion	modeled	by	second	order	definite	Maxwell	
	

Challenging	due	to	large	“near-nullspace”:	
	

r⇥ (rph) = 0

Hiptmair-Xu	decomposition	for	Nedelec	elements	
	

Gh⇧h

The	Auxiliary-space	Maxwell	Solver	(AMS)	achieves	scalability	through	
reduction	to	the	nodal	subspaces	

AMG	solver	for	Point	smoother	for	 AMG	solver	for	
Ah Gt

hAhGh ⇧t
hAh⇧h

Bh = Rh +GhBv,hG
t
h +⇧hBv,h⇧

t
h

r⇥ ↵r⇥ E + �E = f 7! Ahx = b

*	Tz.	Kolev,	P.	Vassilevski,	“Parallel	auxiliary	space	AMG	for	H(curl)	problems”,	JCM,	2009	



Flux 
compression 

generator 

•  Significantly	outperforms	previous	
solvers								up	to	25x	speedup	
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problem

setup

solve

•  Scaled	up	to	125K	cores	(12B	unknowns)		

•  Solves	previously	intractable	problems	

AMS	implementation	in	hypre	requires	minimal	additional	fine-grid	information,	that	
MFEM	can	generate	and	pass	automatically.	
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AMS	has	been	highly	scalable	for	low-order	
discreOzaOons	on	conforming	meshes	



•  In	the	high-order	case,							and								are	more	complicated	and	depend	on	the	
choice	of	H1	and	H(curl)	bases		
•  MFEM	has	general	objects	to	evaluate	these	in	parallel		

•  Discrete	gradient		in	the	non-conforming	case	is	defined	by	commutativity:	

	
	

•  Magnetotelluric	applicaOon																																				(with	A.	Grayver,	ETH)	
	

r⇥ ↵r⇥ E + i�E

We	recently	applied	AMS	to	high-order	non-
conforming	AMR	geo-electromagneOcs	

where	

These computations can be parallelized and automated in general finite element libraries,

such as (Bangerth et al., 2011; MFEM, 2014).

We now consider the general settings of high-order elements on a non-conforming mesh.

In this case, each finite element space has two versions: a conforming one, e.g. V
c

(T), where

the hanging DoFs are constrained by the conforming (real) DoFs, and a non-conforming

one, e.g. V
nc

(T) where the non-conforming DoFs (hanging and real) are unconstrained.

The matrix representation, P
V

, of the embedding operator E 2 V
c

(T) 7! E 2 V
nc

(T)

is precisely the conforming interpolation, see the section on non-conforming meshes. One

can similarly define the matrices P
S

and P
S

representing the conforming interpolation

between the nodal spaces S
c

(T), S
c

(T) and S
nc

(T), S
nc

(T), respectivelly. We also introduce

the matrix representations, R
V

, R
S

and R
S

of the restriction operators from the non-

conforming to the conforming space, which simply ignore the non-conforming components

of their input. Note that with these definitions, R
V

P
V

, R
S

P
S

and R
S

P
S

are just the

identity matrices on the conforming DoFs.

As mentioned in the non-conforming meshes section, the definite Maxwell matrix B in

(16) is defined on the space V
c

(T), i.e. B = B
c

= PT

V

B
nc

P
V

, where B
nc

is the V
nc

(T)

version of B, assembled without interpolatory DoFs constraints. Therefore, in order to

apply AMS to B, we need to construct a “conforming discrete gradient” matrix G
c,h

that

corresponds to the gradient mapping from S
c

(T) to V
c

(T). To obtain an appropriate

definition for G
c,h

, we consider the diagram

S
c

(T)
Gc,h

//

PS

✏✏

V
c

(T)

PV

✏✏

S
nc

(T)
Gnc,h

//

RS

OO

V
nc

(T)

RV

OO

where G
nc,h

is the matrix representation of the gradient mapping '
nc

2 S
nc

(T) 7! r'
nc

2
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V
nc

(T), which can be computed element-by-element, as before, without imposing any con-

straints on the hanging DoFs. We now require that this diagram commutes from S
c

(T) to

V
nc

(T), i.e.

P
V

G
c,h

= G
nc,h

P
S

.

This means thatG
c,h

andG
nc,h

are compatible when computing the gradient of a conforming

nodal function. Since R
V

P
V

= I, this implies the conforming discrete gradient definition

G
c,h

= R
V

G
nc,h

P
S

,

which is what we pass to AMS. Note that by commutativity, the variational auxiliary space

matrix for G
c,h

is just the constrained version of the variational auxiliary space matrix for

G
nc,h

:

GT

c,h

B
c

G
c,h

= GT

c,h

PT

V

B
nc

P
V

G
c,h

= PT

S

�
GT

nc,h

B
nc

G
nc,h

�
P

S

.

Similar considerations imply that the conforming Nédélec interpolation matrix should

be defined as

⇧
c,h

= R
V

⇧
nc,h

P
S

.

In the high-order case, ⇧
nc,h

and consequently ⇧
c,h

can be computed element-wise by

evaluating the Nédélec DoFs of the nodal vector basis functions as discussed above. We

note however that for low-order elements on quadrilateral/hexahedral meshes, the matrix

⇧
c,h

can still be computed based only on G
c,h

and the conforming vertex coordinates as in

(17). Indeed, the entries of R
V

and P
S

are positive in this case, so

|G
c,h

| = R
V

|G
nc,h

|P
S

.

Furthermore, the conformity of the mesh implies G
nc,h

x
nc

= G
nc,h

P
S

x
c

= P
V

G
c,h

x
c

, so

R
V

D
Gnc,hxnc = D

Gc,hxcRV

.
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Gh ⇧h

2nd	order	AMR	for	a	Kronotsky	volcano	model	with	~12K-170K	cells		

Refinement step # DoFs N
iter

N̄CG

iter

0 647 544 22 3

6 786 436 22 3

12 2 044 156 23 3

18 9 291 488 24 4

Table 5: Numerical results for the model shown in Figure 3 and 18 refinement steps. The

number of outer FGMRES and the average numbers of inner CG iterations are denoted by

N
iter

and N̄CG

iter

, respectively.
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AMS	itera<ons	(										)	for	1e-2	tolerance		Refinement step # DoFs N
iter

N̄CG

iter

0 647 544 22 3

6 786 436 22 3

12 2 044 156 23 3

18 9 291 488 24 4

Table 5: Numerical results for the model shown in Figure 3 and 18 refinement steps. The

number of outer FGMRES and the average numbers of inner CG iterations are denoted by

N
iter

and N̄CG

iter

, respectively.
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*	A.	Grayver,	Tz.	Kolev,	“Large-scale	3D	geo-electromagne8c	modeling	using	parallel	adap8ve	high-order	finite	element	
method”,	Geophysics,	2015	



•  MulO-material	single	group	equaOons	(Grey	diffusion)	

	

•  De	Rham	complex:	H(div)	fluxes	match							hydro	thermodynamics	

	

	

•  Explicit-implicit	coupling	allows	for	generic	Ome	integraOon	

dE

dt
+r · ~F = �c

X

k

⌘k�p,k(E � aT 4
k )� Er · v

⌘k⇢k
dek
dt

= ⌘k�k : rv + c⌘k�p,k(E � aT 4
k )

1

3
rE = �1

c

X

k

⌘k�r,k
~F

cAE � B~n · ~F = C on @⌦

Material	energy	

Radia>on	energy	

Radia>on	flux	

L2

HO thermodynamics !HO MHD! HO rad-diff.!

H(grad)
r�! H(curl)

r⇥�! H(div)
r·�! L2

“nodes”! “zones”!“edges”! “faces”!

HO kinematics!

We	are	currently	working	on	high-order	radiaOon-
diffusion	and	its	compaOble	coupling	with	the	hydro	



•  Newton	step	for	Backward	Euler	slopes:	

•  Jacobian	matrix	

•  Energies	are	disconOnuous	so	their	blocks	can	be	eliminated	locally	

•  Jacobian	solve	reduces	to	a	global	system	for	the	fluxes	F	

•  We	take	advantage	of	the	scalable	algebraic	H(div)	solver	from																			:	ADS	

kn = kn�1 � [@N (kn�1)]�1N (kn�1)

2

66664

kek

...
kE

F

3

77775
@N (k) =

2

66664

M⇢k + @Hk �c�tM�k 0
. . .

...
...

�@Hk . . . M+ c�t
P

k M�k D

0 . . . 1
3�tDT 1

cMF + 1
3Bn

3

77775

We	are	currently	working	on	high-order	radiaOon-
diffusion	and	its	compaOble	coupling	with	the	hydro	

*	Tz.	Kolev,	P.	Vassilevski,	“Parallel	auxiliary	space	AMG	for	H(div)	problems”,	SISC,	2012	



High-order	convergence	in	thick	&	thin	limits!	

Tmat(r, t) = T0

✓
1� e�⌧t

2

cos(!r)

◆

Trad(r, t) = T0

✓
1 +

e�⌧t

2

◆
E(r, t) = aT 4

rad

✓
1 +

e�⌧t

2

cos(!r)

◆

Brunner’s	smooth	nonlinear	
manufactured	solution	

Crooked	pipe,	Q2-Q1	simulation	

Equation	terms	of	
similar	magnitudes	

slope 2.00 

slope 2.92-3.00 

σ	=	4e+0	

σ	=	4e+4	

IniOal	coupled	high-order	radiaOon-hydrodynamics	in	
BLAST:	convergence,	“crooked	pipe”	
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§  2D advection 
•  Periodic mesh 

•  Stability determined by convection 
(convection dominated) 

•  Diffusion term 0.001 

•  Modified MFEM example targeting 
DG remap in BLAST 

§  Sequential Time Stepping 
•  Sharp profile is transported 

over 1100 time steps 

•  3rd order explicit method 

•  3-level XBraid hierarchy 

ut = b(x) ·ru+ ��u



Initial	guess	t>0	

§  2D advection 
•  Stability determined by convection 

(convection dominated) 

•  Diffusion term 0.001 

§  Parallel-in-time solution 
•  Sharp profile is transported 

over 1100 time steps 

•  3rd order explicit method 

•  3-level XBraid hierarchy 

ut = b(x) ·ru+ ��u

Itera8on	0	

Initial	guess	t=0	www.llnl.gov/casc/xbraid	

*	R.	Falgout,	S.	Friedhoff,	Tz.	Kolev,	S.	MacLachlan,	J.	Schroder	“Parallel	8me	integra8on	with	mul8grid”,	SISC,	2014	



§  2D advection 
•  Stability determined by convection 

(convection dominated) 

•  Diffusion term 0.001 

§  Parallel-in-time solution 
•  Sharp profile is transported 

over 1100 time steps 

•  3rd order explicit method 

•  3-level XBraid hierarchy 

ut = b(x) ·ru+ ��u

Itera8on	5	

www.llnl.gov/casc/xbraid	

*	R.	Falgout,	S.	Friedhoff,	Tz.	Kolev,	S.	MacLachlan,	J.	Schroder	“Parallel	8me	integra8on	with	mul8grid”,	SISC,	2014	



§  2D advection 
•  Stability determined by convection 

(convection dominated) 

•  Diffusion term 0.001 

§  Parallel-in-time solution 
•  Sharp profile is transported 

over 1100 time steps 

•  3rd order explicit method 

•  3-level XBraid hierarchy 

ut = b(x) ·ru+ ��u

Itera8on	10	

www.llnl.gov/casc/xbraid	

*	R.	Falgout,	S.	Friedhoff,	Tz.	Kolev,	S.	MacLachlan,	J.	Schroder	“Parallel	8me	integra8on	with	mul8grid”,	SISC,	2014	



§  2D advection 
•  Stability determined by convection 

(convection dominated) 

•  Diffusion term 0.001 

§  Parallel-in-time solution 
•  Sharp profile is transported 

over 1100 time steps 

•  3rd order explicit method 

•  3-level XBraid hierarchy 

§  Future Work: 

•  improve convergence (relaxation, 
coarse-grid equations) 

•  pure advection 

ut = b(x) ·ru+ ��u

Itera8on	20	

*	R.	Falgout,	S.	Friedhoff,	Tz.	Kolev,	S.	MacLachlan,	J.	Schroder	“Parallel	8me	integra8on	with	mul8grid”,	SISC,	2014	



Advection-based	interpolation	(DG	pseudo-
time	remap	in	BLAST)	

High-order	mesh	relaxation	in	MFEM	(neo-
Hookean	evolution)	

We	target	high-order	curved	elements	+	unstructured	meshes	+		moving	meshes		



VisIt:	general	data	analysis	tool,	MFEM	
support	since	version	2.9	

GLVis:	native	MFEM	lightweight	OpenGL	
visualization	tool	

Two	visualization	options	for	high-order	functions	on	high-order	meshes.	

glvis.org	 visit.llnl.gov	

BLAST	computa>on	on	2nd	
order	tet	mesh	from	NETGEN	



FEM	solution	of	the	Laplace	equation	on	a	
3D	NURBS	mesh	

2D	mesh	with	3	material	attributes;	the	
interface	is	represented	exactly	

NURBS	meshes	generated	by	the	PMESH	project	at	LLNL	



Total	density	profile	of	gas	impact	test	at	times	t=0,	2,	4,	6,	8	and	10	

High-order	closure	model	essenOal	for	problems	
with	vastly	different	materials	



Material	indicator	function	of	the	gas	impactor	at	final	time	

Closure	model	enables	high-resoluOon	material	
representaOon	without	interface	reconstrucOon	

*	V.	Tomov	et	al.,	“Mul8-Material	closure	models	for	high-order	finite	element	Lagrangian	hydrodynamics”,	in	preparaOon	



§  High-order	finite	elements	show	promise	for	scalable	
mulO-physics	ALE	simulaOons	

§  Some	ongoing	research:	
•  improve	arOficial	viscosity,	closure	model	and	
monotonicity	methods	

•  port	and	opOmize	our	somware	stack	for	upcoming	
architectures	

•  extend	AMR	to	parallel	DG	and	load	balancing	
•  develop	solvers	for	parOally	assembled	operators	
•  parallelize	in	Ome	(XBraid	project)	

§  Papers	and	addiOonal	details:		

§  Open-source	finite	element	somware:	

mfem.org ! glvis.org!

people.llnl.gov/kolev1!

Q4	Rayleigh-Taylor	single-material	
ALE	on	256	processors			

Current	and	future	work	


